

Systeme hoher Sicherheit und Qualität, WS 17/18 - 1 -

Systeme hoher Sicherheit und Qualität
Universität Bremen, WS 2017/2018

Christoph Lüth, Dieter Hutter, Jan Peleska

Lecture 10:

Verification Condition Generation

Systeme hoher Sicherheit und Qualität, WS 17/18 - 2 -

Frohes Neues Jahr!

Systeme hoher Sicherheit und Qualität, WS 17/18 - 3 -

Where are we?

 01: Concepts of Quality

 02: Legal Requirements: Norms and Standards

 03: The Software Development Process

 04: Hazard Analysis

 05: High-Level Design with SysML

 06: Formal Modelling with OCL

 07: Testing

 08: Static Program Analysis

 09: Software Verification with Floyd-Hoare Logic

 10: Correctness and Verification Condition Generation

 11-12: Model Checking

 13: Conclusions

Systeme hoher Sicherheit und Qualität, WS 17/18 - 4 -

VCG in the Development Cycle

Systeme hoher Sicherheit und Qualität, WS 17/18 - 5 -

Introduction

 In the last lecture, we introduced Hoare triples. They allow us
to state and prove correctness assertions about programs,
written as 𝑃 𝑝 {𝑄}

We introduced two notions, namely:

 Syntactic derivability, ⊢ 𝑃 𝑝 {𝑄} (the actual Floyd-Hoare
calculus)

 Semantic satisfaction, ⊨ 𝑃 𝑝 {𝑄}

Question: how are the two related?

The answer to that question also offers help with a practical
problem: proofs with the Floyd-Hoare calculus are
exceedingly long and tedious. Can we automate them, and
how?

Systeme hoher Sicherheit und Qualität, WS 17/18 - 6 -

Correctness and Completeness

 In general, given a syntactic calculus with a semantic
meaning, correctness means the syntactic calculus implies
the semantic meaning, and completeness means all
semantic statements can be derived syntactically.

 Cf. also Static Program Analysis

Correctness should be a basic property of verification calculi.

Completeness is elusive due to Gödel‘s first incompleteness
theorem:

 Any logics which is strong enough to encode the natural
numbers and primitive recursion* is incomplete.**

* Or any other notion of computation.

** Or inconsistent, which is even worse.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 7 -

Correctness of the Floyd-Hoare calculus

Proof: by induction on the derivation of ⊢ 𝑃 𝑝 𝑄 .

More precisely, for each rule we show that:

 If the conclusion is ⊢ 𝑃 𝑝 𝑄 , we can show ⊨ 𝑃 𝑝 𝑄

 For the premisses, this can be assumed.

 Example: for the assignment rule, we show that

Theorem (Correctness of the Floyd-Hoare calculus)
If ⊢ 𝑃 𝑝 {𝑄}, then ⊨ 𝑃 𝑝 {𝑄}.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 8 -

Completeness of the Floyd-Hoare calculus

Predicate calculus is incomplete, so we cannot hope F/H is
complete. But we get the following:

To show this, we construct the weakest precondition.

Theorem (Relative completeness)
If ⊨ 𝑃 𝑝 {𝑄}, then ⊢ 𝑃 𝑝 𝑄 except for the proofs
occuring in the weakenings.

Weakest precondition
Given a program c and an assertion P, the weakest
precondition 𝑤𝑝(𝑐, 𝑃) is an assertion W such that
1. 𝑊 is a valid precondition ⊨ 𝑊 𝑐 𝑃
2. And it is the weakest such: for any other 𝑄 such

that ⊨ 𝑄 𝑐 𝑃 ,𝑊 → 𝑄

Systeme hoher Sicherheit und Qualität, WS 17/18 - 9 -

Constructing the weakest precondition

Consider a simple program and its verification:

Note how proof is constructed backwards systematically.

The idea is to construct the weakest precondition inductively.

This also gives us a methodology to automate proofs in the
calculus.

 𝑥 = 𝑋 ∧ 𝑦 = 𝑌
↔
 𝑦 = 𝑌 ∧ 𝑥 = 𝑋
z := y;

 𝑧 = 𝑌 ∧ 𝑥 = 𝑋
y := x;

 𝑧 = 𝑌 ∧ 𝑦 = 𝑋
x := z;

 𝑥 = 𝑌 ∧ 𝑦 = 𝑋

Systeme hoher Sicherheit und Qualität, WS 17/18 - 10 -

Constructing the weakest precondition

There are four straightforward cases:

(1) 𝑤𝑝 𝐬𝐤𝐢𝐩, 𝑃 = 𝑃

(2) 𝑤𝑝 𝑋 ≔ 𝑒, 𝑃 = 𝑃 [𝑒 / 𝑋]

(3) 𝑤𝑝 𝑐0; 𝑐1, 𝑃 = 𝑤𝑝(𝑐0, 𝑤𝑝 𝑐1, 𝑃)

(4) 𝑤𝑝 𝐢𝐟 𝑏 𝑐0 𝐞𝐥𝐬𝐞 𝑐1 , 𝑃 = (𝑏 ∧ 𝑤𝑝 𝑐0, 𝑝) ∨ (¬ 𝑏 ∧ 𝑤𝑝 𝑐1, 𝑃)

The complicated one is iteration (unsurprisingly, since it is the
source of the computational power and Turing-completeness
of the language). It can be given recursively:

(5) 𝑤𝑝 𝐰𝐡𝐢𝐥𝐞 𝑏 𝑐 , 𝑃 = ¬ 𝑏 ∧ 𝑃 ∨ 𝑤𝑝 𝑐, 𝑤𝑝 𝐰𝐡𝐢𝐥𝐞 𝑏 𝑐 , 𝑃

A closed formula can be given, but it can be infinite and is not
practical. It shows the relative completeness, but does not give
us an effective way to automate proofs.

Hence, 𝑤𝑝(𝑐, 𝑃) is not effective for proof automation, but it
shows the right way: we just need something for iterations.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 11 -

Verification Conditions: Annotations

The idea is that we have to give the invariants manually by
annotating them.

We need a language for this:

 Arithmetic expressions and boolean expressions stays as
they are.

 Statements are augmented to annotated statements:

 S ::= x := a | skip | S1; S2 | if (b) S1 else S2
 | assert P | while (b) inv P S

 Each while loop needs to its invariant annotated.

 This is for partial correctness, total correctness also
needs a variant: an expression which is strictly
decreasing in a well-founded order such as (<,ℕ)
after the loop body.

 The assert statement allows us to force a weakening.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 12 -

Preconditions and Verification Conditions

We are given an annotated statement 𝑐, a precondition P and
a postcondition Q.

 We want to know: when does ⊨ 𝑃 𝑐 {𝑄} hold?

For this, we calculate a precondition 𝑝𝑟𝑒(𝑐, 𝑄) and a set of
verification conditions 𝑣𝑐 𝑐, 𝑄 .

 The idea is that if all the verification conditions hold, then
the precondition holds:

 𝑅

𝑅∈𝑣𝑐(𝑐, 𝑄)

⇒ ⊨ 𝑝𝑟𝑒 𝑐, 𝑄 𝑐 𝑄

 For the precondition 𝑃, we get the additional weaking
𝑃 ⇒ 𝑝𝑟𝑒 𝑐, 𝑄 .

Systeme hoher Sicherheit und Qualität, WS 17/18 - 13 -

Calculation Verification Conditions

 Intuitively, we calculate the verification conditions by stepping
through the program backwards, starting with the
postcondition 𝑄.

For each of the four simple cases (assignment, sequencing,
case distinction and 𝒔𝒌𝒊𝒑), we calculate new current
postcondition 𝑄

At each iteration, we calculate the precondition 𝑅 of the loop
body working backwards from the invariant 𝐼, and get two
verification conditions:

 The invariant 𝐼 and negated loop condition implies 𝑄.

 The invariant 𝐼 and loop condition implies 𝑅.

Asserting 𝑅 generates the verification condition 𝑅 ⇒ 𝑄.

Let‘s try this.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 14 -

Example: deriving VCs for the factorial.

{ 0 <= n }
{ 1 == (1-1)! && (1- 1) <= n }
p := 1;
{ p == (1-1)! && (1- 1) <= n }
c := 1;
{ p == (c-1)! && (c- 1) <= n }
while (c <= n)
 inv (p == (c-1)! && c-1 <= n) {
 { p*c == ((c+1)-1)! && ((c+1)- 1) <= n }
 p := p* c;
 { p == ((c+1)-1)! && ((c+1)- 1) <= n }
 c := c+1;
 { p == (c-1)! && (c- 1) <= n }
 }
{ p == (c-1)! && (c- 1) <= n && ! (c <= n) }
{ p = n! }

VCs (unedited):
1. p == (c-1)! && (c- 1) <= n && ! (c <= n)

==> p= n!

2. p == (c-1)! && c-1 <= n && c<= n
==> p* c= ((c+1)-1)! && ((c+1)-1) <= n

3. 0 <= n ==> 1= (1-1)! && 1-1 <= n

VCs (simplified):
1. p == (c-1)! && (c- 1) <= n && c> n

==> p= n!

2. p == (c-1)! && c-1 <= n && c<= n
==> p* c= c!

2. p == (c-1)! && c-1 <= n && c<= n
==> c <= n

3. 0 <= n ==> 1= 0! && 0 <= n

Systeme hoher Sicherheit und Qualität, WS 17/18 - 15 -

Formal Definition

Calculating the precondition:
𝑝𝑟𝑒 𝐬𝐤𝐢𝐩, 𝑄 = 𝑄
𝑝𝑟𝑒 𝑋 ≔ 𝑒, 𝑄 = 𝑄 𝑒 / 𝑋
𝑝𝑟𝑒(𝑐0; 𝑐1, 𝑄 = 𝑝𝑟𝑒(𝑐0, 𝑝𝑟𝑒 𝑐1, 𝑄)
𝑝𝑟𝑒 𝐢𝐟 𝑏 𝑐0 𝐞𝐥𝐬𝐞 𝑐1, 𝑄 = 𝑏 ∧ 𝑝𝑟𝑒 𝑐0, 𝑄 ∨ ¬ 𝑏 ∧ 𝑝𝑟𝑒 𝑐1, 𝑄
𝑝𝑟𝑒 𝐚𝐬𝐬𝐞𝐫𝐭 𝑅, 𝑄 = 𝑅
𝑝𝑟𝑒 𝐰𝐡𝐢𝐥𝐞 𝑏 𝐢𝐧𝐯 𝐼 𝑐, 𝑄 = 𝐼

Calculating the verification conditions:
𝑣𝑐 𝑠𝑘𝑖𝑝, 𝑄 = ∅
𝑣𝑐 𝑋 ≔ 𝑒, 𝑄 = ∅
𝑣𝑐 𝑐0; 𝑐1, 𝑄 = 𝑣𝑐 𝑐0, 𝑝𝑟𝑒 𝑐1, 𝑄 ∪ 𝑣𝑐 𝑐1, 𝑄
𝑣𝑐 𝐢𝐟 𝑏 𝑐0 𝐞𝐥𝐬𝐞 𝑐1, 𝑄 = 𝑣𝑐 𝑐0, 𝑄 ∪ 𝑣𝑐 𝑐1, 𝑄
𝑣𝑐 𝐰𝐡𝐢𝐥𝐞 𝑏 𝐢𝐧𝐯 𝐼 𝑐, 𝑄 = 𝑣𝑐 𝑐, 𝐼 ∪ {𝐼 ∧ 𝑏 ⇒ 𝑝𝑟𝑒 𝑐, 𝐼 , 𝐼 ∧ ¬𝑏 ⇒ 𝑄}
𝑣𝑐 𝐚𝐬𝐬𝐞𝐫𝐭 𝑅, 𝑄 = 𝑅 ⇒ 𝑄

The main definition:
𝑣𝑐𝑔 𝑃 𝑐 𝑄 = 𝑃 ⇒ 𝑝𝑟𝑒 𝑐, 𝑄 ∪ 𝑣𝑐(𝑐, 𝑄)

Systeme hoher Sicherheit und Qualität, WS 17/18 - 16 -

Correctness of VC

The correctness calculus is correct: if we can prove all the
verifcation conditons, the program is correct w.r.t to given
pre- and postconditions.

Formally:

Proof: by induction on 𝑐.

Theorem (Correctness of the VCG calculus)
Given assertions 𝑃 and 𝑄 (with 𝑃 the precondition and
𝑄 the postcondition), and an annotated program, then

 𝑅

𝑅∈𝑣𝑐𝑔(𝑐, 𝑄)

⇒ ⊨ 𝑃 𝑐 𝑄

Systeme hoher Sicherheit und Qualität, WS 17/18 - 17 -

Using VCG in Real Life

We have just a toy language, but VCG can be used in real life.
What features are missing?

Modularity: the language must have modularity concepts,
e.g. functions (as in C), or classes (as in Java), and we must be
able to verify them separately.

Framing: in our simple calculus, we need to specify which
variables stay the same (e.g. when entering a loop). This
becomes tedious when there are a lot of variables involved; it
is more practical to specify which variables may change.

References: languages such as C and Java use references,
which allow aliasing. This has to be modelled semantically;
specifically, the assignment rule has to be adapted.

Machine arithmetic: programs work with machine words
and floating point representations, not integers and real
numbers. This can be the cause of insidious errors.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 18 -

VCG Tools

Often use an intermediate language for VCG and front-ends
for concrete programming languages.

The Why3 toolset (http://why3.lri.fr)

 A verification condition generator

 Front-ends for different languages:
C (Frama-C), Java (defunct?)

Boogie (Microsoft Research)

 Frontends for programming languages such C, C#, Java.

VCC – a verifying C compiler built on top of Boogie

 Interactive demo:
https://www.rise4fun.com/Vcc/

Systeme hoher Sicherheit und Qualität, WS 17/18 - 19 -

VCC Example: Binary Search

A correct (?) binary search implementation:

#include <limits.h>

unsigned int bin_search(unsigned int a [], unsigned int a_len, unsigned int key)

{

 unsigned int lo= 0;

 unsigned int hi= a_len;

 unsigned int mid;

 while (lo <= hi)

 {

 mid= (lo+ hi)/2;

 if (a[mid] < key) lo= mid+1;

 else hi= mid;

 }

 if (!(lo < a_len && a[lo] == key)) lo= UINT_MAX;

 return lo;

}

Systeme hoher Sicherheit und Qualität, WS 17/18 - 20 -

VCC: Correctness Conditions?

We need to annotate the program.

Precondition:

 a is an array of length a_len;

 The array a is sorted.

Postcondition:

 Let r be the result, then:

 if r is UINT_MAX, all elements of a are unequal to key;

 if r is not UINT_MAX, then a[r] == key.

Loop invariants:

 hi is less-equal to a_len;

 everything „left“ of lo is less then key;

 everything „right“ of hi is larger-equal to key.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 21 -

VCC Example: Binary Search

Source code as annotated for VCC:

#include <limits.h>

#include <vcc.h>

unsigned int bin_search(unsigned int a [], unsigned int a_len, unsigned int key)

 _(requires \thread_local_array(a, a_len))

 _(requires \forall unsigned int i, j; i < j && j < a_len ==> a[i] <= a[j])

 _(ensures \result != UINT_MAX ==> a[\result] == key)

 _(ensures \result == UINT_MAX ==> \forall unsigned int i; i < a_len ==> a[i] != key)

{

 unsigned int lo= 0;

 unsigned int hi= a_len;

 unsigned int mid;

 while (lo <= hi)

 _(invariant hi <= a_len)

 _(invariant \forall unsigned int i; i < lo ==> a[i] < key)

 _(invariant \forall unsigned int i; hi <= i && i < a_len ==>a[i] >= key)

 {

 mid= (lo+ hi)/2;

 if (a[mid] < key) lo= mid+1;

 else hi= mid;

 }

 if (!(lo < a_len && a[lo] == key)) lo= UINT_MAX;

 return lo;

}

Systeme hoher Sicherheit und Qualität, WS 17/18 - 22 -

Binary Search: the Corrected Program

Corrected source code:

#include <limits.h>

#include <vcc.h>

unsigned int bin_search(unsigned int a [], unsigned int a_len, unsigned int key)

 _(requires \thread_local_array(a, a_len))

 _(requires \forall unsigned int i, j; i < j && j < a_len ==> a[i] <= a[j])

 _(ensures \result != UINT_MAX ==> a[\result] == key)

 _(ensures \result == UINT_MAX ==> \forall unsigned int i; i < a_len ==> a[i] != key)

{

 unsigned int lo= 0;

 unsigned int hi= a_len;

 unsigned int mid;

 while (lo < hi)

 _(invariant hi <= a_len)

 _(invariant \forall unsigned int i; i < lo ==> a[i] < key)

 _(invariant \forall unsigned int i; hi <= i && i < a_len ==>a[i] >= key)

 {

 mid= (hi-lo)/2+ lo;

 if (a[mid] < key) lo= mid+1;

 else hi= mid;

 }

 if (!(lo < a_len && a[lo] == key)) lo= UINT_MAX;

 return lo;

}

Systeme hoher Sicherheit und Qualität, WS 17/18 - 23 -

Summary

Starting from the relative completeness of the Floyd-Hoare
calculus, we devised a verification condition generation (vcg)
calculus which makes program verification viable.

Verification condition generation reduces the question
whether the given pre/postconditions hold for a program to
the validity of a set of logical properties.

 We do need to annotate the while loops with invariants.

 Most of these logical properties can be discharged with
automated theorem provers.

To scale to real-world programs, we need to deal with
framing, modularity (each function/method needs to be
verified independently), and machine arithmetic (integer
word arithmetic and floating-points).

