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Frohes Neues Jahr! 
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Where are we? 

 01: Concepts of Quality 

 02: Legal Requirements: Norms and Standards 

 03: The Software Development Process 

 04: Hazard Analysis 

 05: High-Level Design with SysML 

 06: Formal Modelling with OCL 

 07: Testing 

 08: Static Program Analysis 

 09: Software Verification with Floyd-Hoare Logic  

 10: Correctness and Verification Condition Generation 

 11-12: Model Checking 

 13: Conclusions 
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VCG in the Development Cycle 
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Introduction 

 In the last lecture, we introduced Hoare triples. They allow us 
to state and prove correctness assertions about programs, 
written as 𝑃  𝑝 {𝑄} 

We introduced two notions, namely: 

 Syntactic derivability, ⊢ 𝑃  𝑝 {𝑄} (the actual Floyd-Hoare 
calculus) 

 Semantic satisfaction, ⊨ 𝑃  𝑝 {𝑄} 

Question: how are the two related? 

The answer to that question also offers help with a practical 
problem: proofs with the Floyd-Hoare calculus are 
exceedingly long and tedious. Can we automate them, and 
how? 
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Correctness and Completeness 

 In general, given a syntactic calculus with a semantic 
meaning, correctness means the syntactic calculus implies 
the semantic meaning, and completeness means all 
semantic statements can be derived syntactically. 

 Cf. also Static Program Analysis 

 

Correctness should be a basic property of verification calculi. 

Completeness is elusive due to Gödel‘s first incompleteness 
theorem:  

 Any logics which is strong enough to encode the natural 
numbers and primitive recursion* is incomplete.** 

* Or any other notion of computation. 

** Or inconsistent, which is even worse. 

    
Systeme hoher Sicherheit und Qualität, WS 17/18 - 7 -  

Correctness of the Floyd-Hoare calculus 

Proof: by induction on the derivation of ⊢ 𝑃  𝑝 𝑄 . 

More precisely, for each rule we show that: 

 If the conclusion is ⊢ 𝑃  𝑝 𝑄 , we can show ⊨ 𝑃  𝑝 𝑄   

 For the premisses, this can be assumed. 

 Example: for the assignment rule, we show that 

Theorem (Correctness of the Floyd-Hoare calculus) 
If ⊢ 𝑃  𝑝 {𝑄}, then ⊨ 𝑃  𝑝 {𝑄}. 
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Completeness of the Floyd-Hoare calculus 

Predicate calculus is incomplete, so we cannot hope F/H is 
complete. But we get the following: 

 

 

 

 

To show this, we construct the weakest precondition. 

 

 

 

Theorem (Relative completeness) 
If ⊨ 𝑃  𝑝 {𝑄}, then ⊢ 𝑃  𝑝 𝑄  except for the proofs 
occuring in the weakenings. 

Weakest precondition 
Given a program c and an assertion P, the weakest 
precondition 𝑤𝑝(𝑐, 𝑃) is an assertion W such that 
1. 𝑊 is a valid precondition ⊨ 𝑊  𝑐 𝑃  
2. And it is the weakest such: for any other 𝑄 such 

that ⊨ 𝑄  𝑐 𝑃 ,𝑊 → 𝑄 
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Constructing the weakest precondition 

Consider a simple program and its verification: 

 

 

 

 

 

 

 

 

Note how proof is constructed backwards  systematically. 

The idea is to construct the weakest precondition inductively. 

This also gives us a methodology to automate proofs in the 
calculus. 

 𝑥 = 𝑋 ∧ 𝑦 = 𝑌  
↔ 
 𝑦 = 𝑌 ∧ 𝑥 = 𝑋  
z := y; 

 𝑧 = 𝑌 ∧ 𝑥 = 𝑋   
y := x; 

 𝑧 = 𝑌 ∧ 𝑦 = 𝑋  
x := z; 

 𝑥 = 𝑌 ∧ 𝑦 = 𝑋  

    
Systeme hoher Sicherheit und Qualität, WS 17/18 - 10 -  

Constructing the weakest precondition 

There are four straightforward cases: 

(1) 𝑤𝑝 𝐬𝐤𝐢𝐩, 𝑃 = 𝑃 

(2) 𝑤𝑝 𝑋 ≔ 𝑒, 𝑃 = 𝑃 [𝑒 / 𝑋] 

(3) 𝑤𝑝 𝑐0; 𝑐1, 𝑃 = 𝑤𝑝(𝑐0, 𝑤𝑝 𝑐1, 𝑃 ) 

(4) 𝑤𝑝 𝐢𝐟 𝑏 𝑐0  𝐞𝐥𝐬𝐞 𝑐1 , 𝑃 = (𝑏 ∧ 𝑤𝑝 𝑐0, 𝑝 ) ∨ (¬ 𝑏 ∧ 𝑤𝑝 𝑐1, 𝑃 ) 

The complicated one is iteration (unsurprisingly, since it is the 
source of the computational power and Turing-completeness 
of the language). It can be given recursively: 

(5) 𝑤𝑝 𝐰𝐡𝐢𝐥𝐞 𝑏 𝑐 , 𝑃 = ¬ 𝑏 ∧ 𝑃 ∨ 𝑤𝑝 𝑐, 𝑤𝑝 𝐰𝐡𝐢𝐥𝐞 𝑏 𝑐 , 𝑃  

A closed formula can be given, but it can be infinite and is not 
practical. It shows the relative completeness, but does not give 
us an effective way to automate proofs. 

Hence, 𝑤𝑝(𝑐, 𝑃) is not effective for proof automation, but it 
shows the right way: we just need something for iterations. 
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Verification Conditions: Annotations 

The idea is that we have to give the invariants manually by 
annotating them.  

We need a language for this: 

 Arithmetic expressions and boolean expressions stays as 
they are. 

 Statements are augmented to annotated statements: 

             S ::= x := a | skip | S1; S2 | if (b)  S1 else S2 
                    | assert P | while (b) inv P S 

 Each while loop needs to its invariant annotated. 

 This is for partial correctness, total correctness also 
needs a variant: an expression which is strictly 
decreasing in a well-founded order such as (<,ℕ) 
after the loop body. 

 The assert statement allows us to force a weakening. 
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Preconditions and Verification Conditions 

We are given an annotated statement 𝑐, a precondition P and 
a postcondition Q.  

 We want to know: when does ⊨ 𝑃  𝑐 {𝑄} hold? 

 

For this, we calculate a precondition 𝑝𝑟𝑒(𝑐, 𝑄) and a set of 
verification conditions 𝑣𝑐 𝑐, 𝑄 . 

 The idea is that if all the verification conditions hold, then 
the precondition holds: 

 𝑅

𝑅∈𝑣𝑐(𝑐, 𝑄)

⇒ ⊨ 𝑝𝑟𝑒 𝑐, 𝑄 𝑐 𝑄  

 For the precondition 𝑃, we get the additional weaking 
𝑃 ⇒ 𝑝𝑟𝑒 𝑐, 𝑄 . 
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Calculation Verification Conditions 

 Intuitively, we calculate the verification conditions by stepping 
through the program backwards, starting with the 
postcondition 𝑄. 

For each of the four simple cases (assignment, sequencing, 
case distinction and 𝒔𝒌𝒊𝒑), we calculate new current 
postcondition 𝑄 

At each iteration, we calculate the precondition 𝑅 of the loop 
body working backwards from the invariant 𝐼, and get two 
verification conditions: 

 The invariant 𝐼 and negated loop condition implies 𝑄. 

 The invariant 𝐼 and loop condition implies 𝑅. 

Asserting 𝑅 generates the verification condition 𝑅 ⇒ 𝑄. 

 

Let‘s try this. 
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Example: deriving VCs for the factorial. 

{ 0 <= n } 
{ 1 == (1-1)! && (1- 1) <= n } 
p := 1; 
{ p == (1-1)! && (1- 1) <= n } 
c := 1; 
{ p == (c-1)! && (c- 1) <= n } 
while (c <= n)  
  inv (p == (c-1)! && c-1 <= n) { 
  { p*c == ((c+1)-1)! && ((c+1)- 1) <= n }  
  p := p* c; 
  { p == ((c+1)-1)! && ((c+1)- 1) <= n }  
  c := c+1; 
  { p == (c-1)! && (c- 1) <= n }  
  } 
{ p == (c-1)! && (c- 1) <= n && ! (c <= n) }  
{ p = n! } 

VCs (unedited): 
1. p == (c-1)! && (c- 1) <= n && ! (c <= n) 

==> p= n! 
 

2. p == (c-1)! && c-1 <= n && c<= n  
==> p* c= ((c+1)-1)! && ((c+1)-1) <= n 
 

3. 0 <= n ==> 1= (1-1)! && 1-1 <= n 

VCs (simplified): 
1. p == (c-1)! && (c- 1) <= n && c> n  

==> p= n! 
 

2. p == (c-1)! && c-1 <= n && c<= n  
==> p* c= c!  

2. p == (c-1)! && c-1 <= n && c<= n  
==> c <= n 
 

3. 0 <= n ==> 1= 0! && 0 <= n 
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Formal Definition 

Calculating the precondition: 
𝑝𝑟𝑒 𝐬𝐤𝐢𝐩, 𝑄 = 𝑄 
𝑝𝑟𝑒 𝑋 ≔ 𝑒, 𝑄 = 𝑄 𝑒 / 𝑋  
𝑝𝑟𝑒(𝑐0; 𝑐1, 𝑄 = 𝑝𝑟𝑒(𝑐0, 𝑝𝑟𝑒 𝑐1, 𝑄 ) 
𝑝𝑟𝑒 𝐢𝐟 𝑏  𝑐0 𝐞𝐥𝐬𝐞 𝑐1, 𝑄 = 𝑏 ∧ 𝑝𝑟𝑒 𝑐0, 𝑄 ∨ ¬ 𝑏 ∧ 𝑝𝑟𝑒 𝑐1, 𝑄  
𝑝𝑟𝑒 𝐚𝐬𝐬𝐞𝐫𝐭 𝑅, 𝑄 = 𝑅 
𝑝𝑟𝑒 𝐰𝐡𝐢𝐥𝐞 𝑏 𝐢𝐧𝐯 𝐼 𝑐, 𝑄 = 𝐼 

Calculating the verification conditions: 
𝑣𝑐 𝑠𝑘𝑖𝑝, 𝑄 = ∅ 
𝑣𝑐 𝑋 ≔ 𝑒, 𝑄 = ∅ 
𝑣𝑐 𝑐0; 𝑐1, 𝑄 = 𝑣𝑐 𝑐0, 𝑝𝑟𝑒 𝑐1, 𝑄 ∪ 𝑣𝑐 𝑐1, 𝑄  
𝑣𝑐 𝐢𝐟 𝑏  𝑐0 𝐞𝐥𝐬𝐞 𝑐1, 𝑄 = 𝑣𝑐 𝑐0, 𝑄 ∪ 𝑣𝑐 𝑐1, 𝑄  
𝑣𝑐 𝐰𝐡𝐢𝐥𝐞 𝑏  𝐢𝐧𝐯 𝐼 𝑐, 𝑄 = 𝑣𝑐 𝑐, 𝐼 ∪ {𝐼 ∧ 𝑏 ⇒ 𝑝𝑟𝑒 𝑐, 𝐼 , 𝐼 ∧ ¬𝑏 ⇒ 𝑄} 
𝑣𝑐 𝐚𝐬𝐬𝐞𝐫𝐭 𝑅, 𝑄 = 𝑅 ⇒ 𝑄  

The main definition: 
𝑣𝑐𝑔 𝑃  𝑐 𝑄 = 𝑃 ⇒ 𝑝𝑟𝑒 𝑐, 𝑄 ∪ 𝑣𝑐(𝑐, 𝑄) 
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Correctness of VC 

The correctness calculus is correct: if we can prove all the 
verifcation conditons, the program is correct w.r.t to given 
pre- and postconditions. 

 

Formally: 

 

 

 

 

 

 

 

Proof: by induction on 𝑐. 

 

Theorem (Correctness of the VCG calculus) 
Given assertions 𝑃 and 𝑄 (with 𝑃 the precondition and 
𝑄 the postcondition), and  an annotated program, then 

 𝑅

𝑅∈𝑣𝑐𝑔(𝑐, 𝑄)

⇒ ⊨ 𝑃  𝑐 𝑄  
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Using VCG in Real Life 

We have just a toy language, but VCG can be used in real life. 
What features are missing? 

Modularity: the language must have modularity concepts, 
e.g. functions (as in C), or classes (as in Java), and we must be 
able to verify them separately.  

Framing: in our simple calculus, we need to specify which 
variables stay the same (e.g. when entering a loop). This 
becomes tedious when there are a lot of variables involved; it 
is more practical to specify which variables may change. 

References: languages such as C and Java use references, 
which allow aliasing. This has to be modelled semantically; 
specifically, the assignment rule has to be adapted. 

Machine arithmetic: programs work with machine words 
and floating point representations, not integers and real 
numbers. This can be the cause of insidious errors. 
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VCG Tools 

Often use an intermediate language for VCG and front-ends 
for concrete programming languages. 

 

The Why3 toolset (http://why3.lri.fr) 

 A verification condition generator 

 Front-ends for different languages:  
C (Frama-C), Java (defunct?) 

 

Boogie (Microsoft Research) 

 Frontends for programming languages such C, C#, Java. 

VCC – a verifying C compiler built on top of Boogie 

 Interactive demo:  
https://www.rise4fun.com/Vcc/ 
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VCC Example: Binary Search 

A correct (?) binary search implementation: 

 

 
#include <limits.h> 

 

unsigned int bin_search(unsigned int a [], unsigned int a_len, unsigned int key) 

{     

  unsigned int lo= 0; 

  unsigned int hi= a_len; 

  unsigned int mid; 

 

  while (lo <= hi)  

     { 

      mid= (lo+ hi)/2; 

      if (a[mid] < key) lo= mid+1; 

      else hi= mid; 

    } 

 

  if (!(lo < a_len && a[lo] == key)) lo= UINT_MAX; 

 

  return lo; 

} 
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VCC: Correctness Conditions? 

We need to annotate the program. 

Precondition: 

 a is an array of length a_len; 

 The array a is sorted. 

Postcondition: 

 Let r be the result, then: 

 if r is UINT_MAX, all elements of a are unequal to key; 

 if r is not UINT_MAX, then a[r] == key. 

Loop invariants: 

 hi is less-equal to a_len; 

 everything „left“ of lo is less then key; 

 everything „right“ of hi is larger-equal to key. 
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VCC Example: Binary Search 

Source code as annotated for VCC: 

#include <limits.h> 

#include <vcc.h> 

unsigned int bin_search(unsigned int a [], unsigned int a_len, unsigned int key) 

  _(requires \thread_local_array(a, a_len)) 

  _(requires \forall unsigned int i, j; i < j && j < a_len ==> a[i] <= a[j])  

  _(ensures \result != UINT_MAX ==> a[\result] == key)                 

  _(ensures \result == UINT_MAX ==> \forall unsigned int i; i < a_len ==> a[i] !=  key)  

{ 

  unsigned int lo= 0; 

  unsigned int hi= a_len; 

  unsigned int mid; 

   

  while (lo <= hi)  

    _(invariant hi <= a_len) 

    _(invariant \forall unsigned int i; i < lo ==> a[i] <  key)  

    _(invariant \forall unsigned int i; hi <= i && i < a_len ==>a[i] >= key)  

    { 

      mid= (lo+ hi)/2; 

      if (a[mid] < key) lo= mid+1; 

      else hi= mid; 

    } 

  if (!(lo < a_len && a[lo] == key)) lo= UINT_MAX; 

  return lo; 

} 
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Binary Search: the Corrected Program 

Corrected source code: 

 
#include <limits.h> 

#include <vcc.h> 

unsigned int bin_search(unsigned int a [], unsigned int a_len, unsigned int key) 

  _(requires \thread_local_array(a, a_len)) 

  _(requires \forall unsigned int i, j; i < j && j < a_len ==> a[i] <= a[j])  

  _(ensures \result != UINT_MAX ==> a[\result] == key)                 

  _(ensures \result == UINT_MAX ==> \forall unsigned int i; i < a_len ==> a[i] !=  key)  

{ 

  unsigned int lo= 0; 

  unsigned int hi= a_len; 

  unsigned int mid; 

   

  while (lo < hi)  

    _(invariant hi <= a_len) 

    _(invariant \forall unsigned int i; i < lo ==> a[i] <  key)  

    _(invariant \forall unsigned int i; hi <= i && i < a_len ==>a[i] >= key)  

    { 

      mid= (hi-lo)/2+ lo; 

      if (a[mid] < key) lo= mid+1; 

      else hi= mid; 

    } 

  if (!(lo < a_len && a[lo] == key)) lo= UINT_MAX; 

  return lo; 

} 
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Summary 

Starting from the relative completeness of the Floyd-Hoare 
calculus, we devised a verification condition generation (vcg) 
calculus which makes program verification viable. 

Verification condition generation reduces the question 
whether the given pre/postconditions hold for a program to 
the validity of a set of logical properties. 

 We do need to annotate the while loops with invariants. 

 Most of these logical properties can be discharged with 
automated theorem provers. 

To scale to real-world programs, we need to deal with 
framing,  modularity (each function/method needs to be 
verified independently), and machine arithmetic (integer 
word arithmetic and floating-points). 


