

Warum Unix-Ports
Pascal bis Oberon in der Bremer Informatik

 Günter Feldmann
Universität Bremen

fld@math.uni-bremen.de

1970th,
Dept. of Electrical Engineering

● 1974/75: first university computer

 CII-Honeywell Bull, IRIS-80
● first Pascal port from a university in Paris.
● learned Pascal by reading the compiler sources
● engineers needed 64-bit REALS,

compiler got modified accordingly
● compiling and linking the compiler took 2 days
● N. Wirth: Systematisches Programmieren

Since 1981,
Dept. of Mathematics and Computer Science

● first personal computers: DEC PDT 11
● PDP11 instruction set, but some instructions

were missing, these had to be emulated in

software as the interpreters and compilers used

them.
● UCSD Pascal and some times a Modula (not

Modula-2) compiler under RT11.
● Small local area network via V24 connections

Computer Science

● A series of different computers
● DEC PDP11/44, BSD Unix
● DEC VAX 750 with 8 VT100 terminals, BSD Unix
● 30 Atari 520 ST (M6800)
● 20 Sun3 Workstations (M6820)
● all machines were equipped with Pascal and/or

Modula-2 compilers

● Some machines (Pascal Microengine, PERQ)

were microprogrammed for Pascal (p-code, Q-
code)

Computer Science

● workstation pool for students

● 30 machines (1986), 100 machines today
● in the beginning of 1990th we acquired Sun4

workstations (SPARC). No Modula-2 compiler!
● ETHZ released the SPARC Oberon system

hosted by SunOS. This system was used in the

course “Software Projekt” until 1996. Then

“Java” came …
● programming courses got replaced by courses in

“internet programming”

Keeping Oberon alive on our hardware

● OS change: SunOS (BSD) to Solaris (SYSVR4)
● despite binary compatibility SPARC Oberon failed.

Oberon compiler used registers reserved for

usage by the system. Hard to find but easy to fix.

● New workstations: IBM RS6000 with Solaris
● PowerPC processor
● no software, Solaris got canceled after delivery
● To bring up Oberon on these machines by cross-

compiling looked easy as everything needed was

available: POWER Oberon compiler, mixed sources

Keeping Oberon alive on our hardware

● Main problems encountered:
● Solaris and the POWER Oberon compiler adhered

different ABIs (compiler: AIX, MacOS, Solaris: SYSV).
– The loader (coded in C) could not call

Oberon procedures without assembler code
– Oberon code could call ext. C procedures only

with a limited number of parameters
● The big endian PowerPC processor was used in little endian

mode by Solaris.

– Some of the instructions used by the compiler caused

illegal instruction traps in little endian mode

Further developments at ETHZ

● Solaris (SPARC, PPC) Oberon: Oberon V4

● New developments:

J. Marais: GUI, Gadgets, System 3

M. Franz: Code generation on the fly, OMI, Slim Binaries

● Solaris PPC: compiler from MacOberon, SYS V ABI problem

● Solaris SPARC: compiler upgrade,

Mac Oberon frontend + SPARC Oberon backend

● Extended structure “Module” & expandable heap

Additional and reanimated Ports

● Linux PPC: Solaris PPC had been abandoned by SUN

● Problems with Linux PPC:

● explicit cache invalidation after code loading,

got assembler code from kernel developers
● Cross compiling (little endian, big endian) failed,

compiler bug (WriteBytes instead of WriteLInt)

● Solaris x86 (OpenIndiana): my preferred system

● MacOS X: MacOberon failed on MacOS X and

people from Amsterdam asked for it

● Linux x86: purchased 30 Linux systems for the public pool,

the existing LinuxOberon failed, exception state

Preparing UnixOberon for code optimizing

● Generating code on the fly > profile executing code >

optimize code in the background > reload optimized module(s).

● interruptable background thread needed for code optimizing

● New module Threads.Mod (based on Solaris threads, posix threads)

posix threads missed "suspend" and "resume" (needed for GC)

● Display operations needed a mutex to avoid X server crashes.

● Reimplemented J. Gutknechts SortDemo program with concurrency

to show that threads and "System 3 Gadgets" can work together.

Unix Ports of AOS

● T. Kistler left Irvine for working at Transmeta,

code optimizer was never released to the public and

the working group of M. Franz discontinued using Oberon

● As the Unix ports of Oberon now contained threads

F. Friedrich animated me to try an Unix port of AOS

● AOS depended on the language extensions of paco,

no paco for PPC and SPARC, abandoned these platforms

Unix Ports of AOS

● Started with own '.Tool' texts, module hierarchy by trial

and error, later switched to S. Staubers Release.Build

● The hardest parts:

● reliable implementing the kernel procedures Lock,

Await and Unlock based on POSIX threads with

round robin scheduling
● keep the heap stable (adresses >= 2^31, recursive mark)

● UnixAOS supports applications which can be run without the

AOS desktop

aos -x M.P

Restrictions: apps. may not import windowmanager and display

Linux specific Problems

● Frequent modifications of the system interface

● Missing sigaltstack, could not handle stack overflow.

● POSIX threads allow priorities only in FIFO mode and

need to be run suid root, can totally block Linux!

In Solaris and Darwin thread priorities had no problems

● 64-bit Linux: dynamic linking failed, C-adapters needed

● Biggest mistake:

● Never installed the original AOS system to see the

differences in behavior to UnixAos. An ugly bug in

module XDisplay.Mod (vast of heap space) persisted

undetected for a long time.

● Compiler extensions I would like:

● Procedure inlining (crypto software)
● Adjustable (small) stacksizes: timer, X-input polling, ...

Problem with large stacks and compiler paco:

– many parsers > many stacks > unix paging >
– paging slows down compilation speed >
– time barrier > compilation fails

Oberon in progamming curses ?
● The compiler cannot be used in a familar environment

● Oberon modules cannot be combined with third party software

● Documentation:

A complete manual for the (current) compiler is missing.

One has to read at least the following documents:

H. Mossenbock, N. Wirth: The Programming Language Oberon2, 1993

P. Reali: Active Oberon Language Report, 2004

F. Friedrich, F. Negele: Proposal for Modules Contexts, 2008

Friedrich, Glavitsch, Negele, Stauber:

A2 Proramming Quickstart Guide, 2010

still undocumented:

Inline assembler, procedure inlining, current language (Fox)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

