Warum Unix-Ports
Pascal bis Oberon in der Bremer Informatik

Gunter Feldmann

Universitat Bremen
fld@math.uni-bremen.de



1970th,
Dept. of Electrical Engineering

e 1974/75: first university computer
Cll-Honeywell Bull, IRIS-80

first Pascal port from a university in Paris.

learned Pascal by reading the compiler sources
* engineers needed 64-bit REALS,
compiler got modified accordingly
« compiling and linking the compiler took 2 days
* N. Wirth: Systematisches Programmieren



Since 1981,
Dept. of Mathematics and Computer Science

o first personal computers: DEC PDT 11

 PDP11 instruction set, but some instructions
were missing, these had to be emulated in
software as the interpreters and compilers used
them.

 UCSD Pascal and some times a Modula (not
Modula-2) compiler under RT11.

 Small local area network via V24 connections



Computer Science

» A series of different computers

« DEC PDP11/44, BSD Unix

« DEC VAX 750 with 8 VT100 terminals, BSD Unix
30 Atari 520 ST (M6800)

20 Sun3 Workstations (M6820)

 all machines were equipped with Pascal and/or

Modula-2 compilers
 Some machines (Pascal Microengine, PERQ)

were microprogrammed for Pascal (p-code, Q-
code)



Computer Science

» workstation pool for students

30 machines (1986), 100 machines today

in the beginning of 1990™ we acquired Sun4
workstations (SPARC). No Modula-2 compiler!
ETHZ released the SPARC Oberon system
hosted by SunOS. This system was used in the
course “Software Projekt” until 1996. Then
“‘Java’ came ...

programming courses got replaced by courses in
“internet programming”



Keeping Oberon alive on our hardware

OS change: SunOS (BSD) to Solaris (SYSVR4)

« despite binary compatibility SPARC Oberon failed.
Oberon compiler used registers reserved for
usage by the system. Hard to find but easy to fix.

New workstations: IBM RS6000 with Solaris

 PowerPC processor

* no software, Solaris got canceled after delivery

* To bring up Oberon on these machines by cross-
compiling looked easy as everything needed was
available: POWER Oberon compiler, mixed sources



Keeping Oberon alive on our hardware

* Main problems encountered:
e Solaris and the POWER Oberon compiler adhered

different ABls (compiler: AlX, MacOS, Solaris: SYSV).

- The loader (coded in C) could not call
Oberon procedures without assembler code
— Oberon code could call ext. C procedures only
with a limited number of parameters
* The big endian PowerPC processor was used in little endian

mode by Solaris.

- Some of the instructions used by the compiler caused
llegal instruction traps in little endian mode



Further developments at ETHZ

Solaris (SPARC, PPC) Oberon: Oberon V4

New developments:
J. Marais: GUI, Gadgets, System 3

M. Franz: Code generation on the fly, OMI, Slim Binaries

Solaris PPC: compiler from MacOberon, SYS V ABI problem
Solaris SPARC: compiler upgrade,
Mac Oberon frontend + SPARC Oberon backend

Extended structure “Module” & expandable heap



Additional and reanimated Ports

Linux PPC: Solaris PPC had been abandoned by SUN
Problems with Linux PPC:

 explicit cache invalidation after code loading,
got assembler code from kernel developers

* Cross compiling (little endian, big endian) failed,
compiler bug (WriteBytes instead of WriteLInt)

Solaris x86 (Openlindiana): my preferred system
MacOS X: MacOberon failed on MacOS X and

people from Amsterdam asked for it
Linux x86: purchased 30 Linux systems for the public pool,

the existing LinuxOberon failed, exception state



Preparing UnixOberon for code optimizing

Generating code on the fly > profile executing code >

optimize code in the background > reload optimized module(s).
interruptable background thread needed for code optimizing

New module Threads.Mod (based on Solaris threads, posix threads)
posix threads missed "suspend” and "resume" (needed for GC)

Display operations needed a mutex to avoid X server crashes.

Reimplemented J. Gutknechts SortDemo program with concurrency

to show that threads and "System 3 Gadgets" can work together.



Unix Ports of AOS

« T. Kistler left Irvine for working at Transmeta,
code optimizer was never released to the public and

the working group of M. Franz discontinued using Oberon

e As the Unix ports of Oberon now contained threads

F. Friedrich animated me to try an Unix port of AOS

 AOS depended on the language extensions of paco,

no paco for PPC and SPARC, abandoned these platforms



Unix Ports of AOS

» Started with own ".Tool' texts, module hierarchy by trial
and error, later switched to S. Staubers Release.Build
 The hardest parts:

* reliable implementing the kernel procedures Lock,
Await and Unlock based on POSIX threads with
round robin scheduling
* keep the heap stable (adresses >= 2*31, recursive mark)
* UnixAOS supports applications which can be run without the

AOS desktop

aos -x M.P
Restrictions: apps. may not import windowmanager and display



Linux specific Problems

Frequent modifications of the system interface
Missing sigaltstack, could not handle stack overflow.
POSIX threads allow priorities only in FIFO mode and
need to be run suid root, can totally block Linux!

In Solaris and Darwin thread priorities had no problems

64-bit Linux: dynamic linking failed, C-adapters needed



* Biggest mistake:

* Never installed the original AOS system to see the
differences in behavior to UnixAos. An ugly bug in
module XDisplay.Mod (vast of heap space) persisted
undetected for a long time.

 Compiler extensions | would like:

* Procedure inlining (crypto software)
* Adjustable (small) stacksizes: timer, X-input polling, ...
Problem with large stacks and compiler paco:

— many parsers > many stacks > unix paging >
- paging slows down compilation speed >
- time barrier > compilation fails



Oberon in progamming curses ?

 The compiler cannot be used in a familar environment
* Oberon modules cannot be combined with third party software
 Documentation:

A complete manual for the (current) compiler is missing.

One has to read at least the following documents:

H. Mossenbock, N. Wirth: The Programming Language Oberon2, 1993
P. Reali: Active Oberon Language Report, 2004
F. Friedrich, F. Negele: Proposal for Modules Contexts, 2008
Friedrich, Glavitsch, Negele, Stauber:
A2 Proramming Quickstart Guide, 2010
still undocumented:

Inline assembler, procedure inlining, current language (Fox)



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

